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Motivation

Variable selection is a ubiquitous problem while dealing with
high-dimensional data, for example gene microarray data.
Many models make stringent assumptions on the error
distribution or the existence of moments - robust methods are
required!
LASSO - very popular variable selection methodology.
We present fast Rank-based LASSO methods for variable
selection that do not make the stringent assumptions and work
under high-dimensional settings and multicollinearity.
GOAL: We aim to identify the set of relevant predictors T :

T = {1 ≤ j ≤ p : βj ̸= 0}.
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Model

We consider the model as:

Yi = g(β ′Xi ,εi), i = 1, . . . ,n. (1)

β is a p-dimensional vector.
g(.) is an unknown monotonic link function. The covariates
influence the response through the link function g(.) of the scalar
product β ′Xi .
No assumptions are made on the form of the link function g or
the distribution of the error εi .
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Rank-LASSO

We define the rank Ri corresponding to response Yi as:

Ri =
n

∑
j=1

I(Yj ≤ Yi), i = 1, . . . ,n,

The relevant covariates are identified by solving the following
rank-based LASSO problem:

RankLASSO: θ̂ = argmin
θ∈Rp

Q(θ)+λ |θ |1, (2)

where

Q(θ) =
1

2n

n

∑
i=1

(
Ri

n
− 1

2
−θ

′Xi

)2

. (3)
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Assumptions

Assumption (A1)

We assume that (X1,ε1), . . . ,(Xn,εn) are i.i.d. random vectors such
that the distribution of X1 is absolutely continuous and X1 is
independent of the noise variable ε1. Additionally, we assume that
E(X1) = 0, H = E(X1X ′

1) is positive definite and Hjj = 1 for j = 1, . . . ,p.

Assumption (A2)

We assume that for each θ ∈ Rp, the conditional expectation
E(θ ′X1|β ′X1) exists and E(θ ′X1|β ′X1) = dθ β ′X1 for a real number
dθ ∈ R.
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Assumptions

Assumption (A3)

We assume that the design matrix and the error term satisfy
Assumptions A1 and A2, the cumulative distribution function F of the
response variable Y1 is increasing and g in 1 is increasing with
respect to the first argument.
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Relation between Rank-LASSO estimate and β

RankLASSO does not estimate β , but the vector

θ
0 = argmin

θ∈Rp
EQ(θ) (4)

The minimizer θ 0 is given by the formula

θ
0 =

1
n2 H−1

(
E

n

∑
i=1

RiXi

)
. (5)

Since
n

∑
i=1

RiXi =
n

∑
i=1

n

∑
j=1

I(Yj ≤ Yi)Xi = ∑
i ̸=j

I(Yj ≤ Yi)Xi +
n

∑
i=1

Xi

and that E(Xi) = 0, we can rewrite (5) as θ0 = n−1
n H−1µ where

µ = E[I(Y2 ≤ Y1)X1].
8 / 34
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Relation between Rank-LASSO estimate and β

Theorem

Consider the model (1). If Assumptions (A1) and (A2) are satisfied,
then

θ0 = γβ β

with

γβ =
n−1

n β ′µ

β ′Hβ
=

n−1
n Cov(F (Y1),β

′X1)

β ′Hβ
, (6)

where F is a cumulative distribution function of a response variable
Y1.
Additionally, if F is increasing and g is increasing with respect to the
first argument, then γβ > 0, so the signs of β coincide with the signs
of θ 0 and

T = {j : βj ̸= 0}= {j : θ
0
j ̸= 0}. (7)
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Relation between Rank-LASSO estimate and β

Therefore, Rank-LASSO can be used for variable selection from
a large number of explanatory variables, as the support of β

remains intact through the Rank-based LASSO model.
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Motivation

Presenting the important properties of Rank-LASSO via
non-asymptotic results.
Ensuring applicability of the method for high-dimensional
scenario especially for p >> n.
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Assumption 4

Assumption

Let (X1)T be the vector of significant predictors and suppose that it is
subgaussian with coefficients τ0 > 0 i.e for each u ∈ Rp0 we have
Eexp(uT (X1)T )≤ exp(τ2

0 uT u/2). Also we have, the insignificant
predictors are univariate subgaussian, i.e for each a ∈ R and j ̸∈ T ,
E(aX1j)≤ exp(τ2

j a2/2), for τj > 0. Denote, τ = max(τ0,τj , j ̸∈ T ).

12 / 34
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Characteristics measuring the potential for consistent
estimation of model parameters

Let T be the set of indices corresponding to the support of true
vector β .
Suppose that θT and θT ′ be the restrictions of the vector θ ∈ Rp

to indices of the indices from T and T ′, respectively.
For, ζ > 1, a cone can be considered,

C(ζ ) = {θ ∈ Rp : |θT ′ |1 ≤ ζ |θT |1}
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Characteristics measuring potential for consistent
estimations of model parameters

Restricted Eigen Value (Bickel et al. (2009)):

RE(ζ ) = inf
0̸=θ∈C(ζ )

θ T X T Xθ

n |θT |22

Compatibility Factor (Van de Geer (2008)):

K (ζ ) = inf
0̸=θ∈C(ζ )

p0θ T X T Xθ

n |θT |21

Cone Invertibility Factor(CIF, Ye and Zhang (2010)):

F̄q(ζ ) = inf
0̸=θ∈C(ζ )

p1/q
0 |X T Xθ |∞

n |θT |q

14 / 34
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Characteristics measuring potential for consistent
estimations of model parameters

Population version of CIF is given by,

Fq(ζ ) = inf
0̸=θ∈C(ζ )

p1/q
0 |Hθ |∞
n |θT |q

,

where H = E(X T X ).
In this report the CIF will be used as it allows formulation of
convergence results for any lq norm, for q ≥ 1.
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Estimation Accuracy of Rank-LASSO

Theorem

Let a ∈ (0,1), q ≥ 1 and ζ ≥ 1 be arbitrary. Suppose that the
assumptions A3 and A4 are satisfied. Also,

n ≥
K1p2

0τ4(1+ζ )2log(p/a)
F 2

q (ζ )

λ ≥ K2
ζ +1
ζ −1

τ
2

√
log(p/a)

kn

where K1,K2 are universal constants and k is the smallest eigen
value of the correlation matrix between true predictor HT = (Hi ,j)j ,k∈T .
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Estimation Accuracy of Rank-LASSO

Theorem
Then there exists a universal constant K3 such that,

|θ̂ −θ
0 |q ≤

4ζp1/q
0 λ

(ζ +1)Fq(ζ )

with probability at least 1−K3a
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Estimation Accuracy of Rank-LASSO

This theorem provides bound to the estimation error.
It does not require n to be very large. It allows p to increase
exponentially as a function of n.
By replacing a by a sequence an, that does not decreases too
fast and replacing λ by corresponding sequence λn based on an,
the consistency conditions can be presented.
The consistency holds even when number of predictors is
significantly. larger than sample size.
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Separability of Rank-LASSO

Corollary

If the conditions of Theorem 2 are satisfied for q = ∞, then for
θ 0

min ≥ 8ζ λ

(ζ+1)F∞(ζ )
we have,

P(∀j∈T ,k ̸∈T |θ̂j |> |θ̂k |)≥ 1−K3a

where θ 0
min =minj∈T |θ 0

j |

θ 0
min can not be too small.

As, θ 0 = γβ β , according to Corollary 4 , minj∈T |βj | ≥ 8ζ λ

γβ (ζ+1)F∞(ζ )
.
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Estimation Accuracy of Rank-LASSO

Corollary

Let a ∈ (0,1) be arbitrary and Assumptions A3 and A4 are satisfied.
Suppose that, there exists ζ0 > 1,C1 > 0 and C2 < ∞ such that
k ≥ C1,F∞(ζ0)≥ C1 and τ ≤ C2. Then for,

n&≥ K1p2
0 log(p/a),λ ≥ K2

√
log(p/a)

n
we have ,

P( |θ̂ −θ
0 |∞ ≤ 4λ/C1)≥ 1−K3a (8)

where K1,K2 depend only on ζ0,C1,C2 and K3 is a universal constant
as mentioned in Theorem 2.

The above corollary is a simplified version of Theorem 2.
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Thresholded Rank-LASSO
Weighted Rank-LASSO

Extensions to Rank-LASSO technique

Main drawback of Rank-LASSO that it can recover true model
only if irrepresentable condition is satisfied.
If the condition does not hold, then we need to add a large
number of irrelevant predictors for the process to yield true
model.
We discuss following techniques by which this problem can be
solved.
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Thresholded Rank-LASSO
Weighted Rank-LASSO

Threshold Rank-LASSO

We consider thresholded RankLASSO, denoted by θ̂ th and defined as

θ̂
th
j = θ̂jI(|θ̂j | ≥ δ ), j = 1, . . . ,p

where θ̂ is the RankLASSO esimator and δ is a threshold.

Theorem

Assuming Cor. 5 holds, and selecting the sample size and tuning
parameter accordingly, if θ 0

min/2 ≥ δ > K4λ , (K4 defined in Cor. 5, then

P(T̂ th = T )≥ 1−K3a

where, T̂ th = {1 ≤ j ≤ p : θ̂ th
j ̸= 0} is the estimated estimated set of

relevant predictors by thresholded RankLASSO.

22 / 34
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Thresholded Rank-LASSO
Weighted Rank-LASSO

Thresholded RankLASSO

This suggests that the thresholded RankLASSO has potential for
identifying the support of β under milder regularity conditions.
This also suggests that under the conditions, the sequence of
models based on ranking provided by RankLASSO estimates
contain the true model.

23 / 34
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Thresholded Rank-LASSO
Weighted Rank-LASSO

Weighted RankLASSO

We redefine our objective function as follows:

Q(θ)+λa

p

∑
j=1

wj |θj |

where λa > 0, with weights defined as follows: For an arbitrary
number K > 0 and the RankLASSO estimator θ̂ ,

wj = |θ̂j |−1, for |θ̂j | ≤ λa and wj ≤ K otherwise

24 / 34
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Weighted RankLASSO

Theorem

Assuming Cor. 5 holds, let λa = K4λ , if θ 0
min/2 > λa and p0λ ≤ K5,

with K5 being sufficiently small, then there exists a global minimizer
θ̂ a, such that θ̂T ′ = 0 and

P[|θ̂ a
T −θ

0
T |1 ≤ K7p0λ ]≥ 1−K6a
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Advantage of these modifications

Absolute value loss function is robust with respect to distribution
of noise variable.
However, it requires that that the density of the noise is
continuous in a neighbourhood of 0.
The modifications suggested do not require such restrictions and
the procedures work well in single index models.
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Simulation Scenarios

Yi = β
′Xi + εi

Xi ∼ N(0,Σ)
Σ = I or Σjj = 1,Σjk = 0.3
ε ∼ Cauchy distribution

β = (3, . . . ,3︸ ︷︷ ︸
p0

,0, . . . ,0︸ ︷︷ ︸
p−p0

)

p0 ∈ {3,10,20}
n ∈ {100,200,300,400}
p ∈ {100,400,900,1600}
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Simulation Scenarios

We also simulate the genotypes of p independent Single
Nucleotide Polymorphisms (SNPs)
Explanatory variables can take only three values: 0, 1 and 2.
Given the frequency πj for j-th SNP, the explanatory variable Xij
has the distribution:

P(Xij = 0) = π
2
j ,P(Xij = 1) = 2πj(1−πj)andP(Xij = 2) = (1−πj)

2.

Here, πj ∼ U(0,1,0.5).
Yi = β ′Xi + εi
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Simulation Scenarios

Yi = exp
(
1+0.05β

′Xi
)
+ εi

Xi ∼ N(0,Σ)
Σjk = 0.3
ε ∼ Cauchy distribution

β = (3, . . . ,3︸ ︷︷ ︸
p0

,0, . . . ,0︸ ︷︷ ︸
p−p0

)

p0 ∈ {3,10,20}
n ∈ {100,200,300,400}
p ∈ {100,400,900,1600}
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RankLasso (rL)
adaptive RankLasso (arL)
thresholded RankLasso (thrL)
Lasso with cross-validation (cv)

NMP - average number of misclassified predictors
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Figure: Plots of NMP (average number of misclassified predictors) as the
function of p.
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Final Remarks
The methodology described does not require knowledge of the
distribution of the covariates or make moment assumptions on
the error distribution.
The RankLASSO is essentially a convex optimization problem.
Hence, it is computationally fast, even when p > > n or in
presence of multicollinearity.
Under certain assumptions, the support of θ0 coincides with that
of β .
Our simulations illustrate that the thresholded and adaptive
versions of RankLasso can properly identify the predictors even
when the link function is non-linear, predictors are correlated and
the error comes from the Cauchy distribution.
Some open questions: selection of optimal λ , δ and wj ’s.

Thank You!
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